Keck School Faculty

Yali Dou

Yali Dou

Professor of Medicine
Marion and Harry Keiper Chair in Cancer Research
Co-Director of the Ph.D. Program in Molecular Medicine
Medicine
1441 Eastlake Ave. NTT 3416 Health Sciences Campus Los Angeles

Contact

Dysregulation of intercellular signaling by MOF deletion leads to liver injury J Biol Chem. 2021 Jan-Jun; 296:100235. . View in PubMed

Histone Acetyltransferase MOF Blocks Acquisition of Quiescence in Ground-State ESCs through Activating Fatty Acid OxidationCell Stem Cell. 2020 09 03; 27(3):441-458. e10. . View in PubMed

Cryo-EM structure of the human MLL1 core complex bound to the nucleosome Nat Commun. 2019 12 05; 10(1):5540. . View in PubMed

HOXA9 Reprograms the Enhancer Landscape to Promote LeukemogenesisCancer Cell. 2018 10 08; 34(4):643-658. e5. . View in PubMed

MLL1 Inhibition Reprograms Epiblast Stem Cells to Naive Pluripotency Cell Stem Cell. 2016 Apr 07; 18(4):481-94. . View in PubMed

Hijacked in cancer: the KMT2 (MLL) family of methyltransferases Nat Rev Cancer. 2015 Jun; 15(6):334-46. . View in PubMed

Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia Mol Cell. 2014 Jan 23; 53(2):247-61. . View in PubMed

The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network Cell Stem Cell. 2012 Aug 03; 11(2):163-78. . View in PubMed

Dr. Yali Dou is a Professor in the Department of Medicine and Department of Biochemistry and Molecular Medicine. She currently serves as Co-Leader of the Genomics and Epigenetic Regulation (GER) program at Norris Comprehensive Cancer Center.

Prior to joining USC in June of 2020, Dr. Dou was a Professor in the Department of Pathology and Biological Chemistry at University of Michigan, Ann Arbor since October of 2006. Dr. Dou has received a number of prestigious awards including the Leukemia & Lymphoma Society Scholar Award (2012), Stand Up to Cancer IRG Award (2011), AACR Gertrude B. Elion Cancer Research Award (2010) and Dean’s Award in Basic Science at University of Michigan (2014).

Research Interests
Cell fate decisions are controlled by transcription factors acting in concert with epigenetic regulators, which include enzymes that carry out histone post-translational modifications. Epigenetic mechanism underlies cell fate commitment and plasticity; its dysregulation emerges as a key characteristic of human malignancies. The Dou lab uses multidisciplinary approaches to study the establishment and maintenance of gene regulatory networks, focusing on how chromatin modifications exert temporal and spatial gene regulation via transcription factors and DNA regulatory elements. The lab is also interested in the interplays between chromatin modifications and other important cellular processes, including metabolic regulation, genome stability and higher order chromatin organization. In particular, Dou lab has extensive research on the MLL/KMT2 family of histone methyltransferases. MLL/KMT2 deposit histone H3 lysine 4 methylation, which prominently marks active gene promoters and distal enhancers. The MLL/KMT2 enzymes are frequently deleted, mutated or translocated in acute leukemia, solid tumors as well as a wide spectrum of human developmental syndromes. The study will not only advance understanding of the fundamental roles of epigenetic modulators in development and diseases, but also provide critical insights into designing novel target-based therapeutic strategies for cancer treatment and regenerative medicine.
sc ctsi logoPowered by SC CTSI